Name
Chemistry
Monster Review
Any question listed as italics and bold is for honor chem. only.

1. Precipitation
2. Gas evolution:
3. Meter:
4. Liter:
5. Sublimation:
6. Vapordeposition:
7. Condensation:
8. Solidification:
9. Oxidation: $* * *$
10. Reduction:***
11. Reducing agent: ${ }^{* * * *}$
12. Oxidation state $: * * *$
13. Voltage:
14. Current:
15. Cathode:
16. Suspension:
17. Alloy:
18. Concentrated:
19. Solvent:
20. Supersaturated:
21. Ionic Bond
22. Molecule
23. Formula Unit
24. Polar covalent bonding
25. Electronegativity
26. Dipole
27. Polar
28. Covalent bond
29. Nomenclature
30. CuCl_{2}
31. $\mathrm{H}_{2} \mathrm{~S}_{\text {(aq) }}$
32. $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}$
33. SF_{6}
34. $\mathrm{NH}_{4} \mathrm{ClO}$
35. CuCl
36. $\mathrm{H}_{2} \mathrm{O}$
37. KOH
38. HBrO_{2}
39. NAME

FORMULA

42. Copper II nitrate
43. Oxygen tetrafluoride
44. Hydrofluoric acid
45. Sulfuric acid
46. Sodium sulfate
47. Aluminum oxide
48. Nitrous acid
49. Water
50. Magnesium Fluoride
51. Boron trifluoride
52. In your own words explain how a molecule becomes polar. (What are the two factors, explain.)
53. $138.5 \mathrm{~K}=$ \qquad ${ }^{\circ} \mathrm{C}$
54. $32^{\circ} \mathrm{F}=$ \qquad
55. $212^{\circ} \mathrm{F}=$ \qquad
56. 1500 C \qquad K
57. 160 Torr $=$ \qquad Atm
58. $150 \mathrm{mmHg}=$ \qquad
59. 30 in $\mathrm{Hg}=$ \qquad atm

Determine if the following are chemical or physical reactions
60. Log burning in campfire.
61. Getting your hair cut.
62. Camera flash going off.
63. Lightning bug flashing
64. Gaseous vapor escaping from a can of pop.
65. Solid water vapor forming on a leaf in the early morning during winter.

Convert the following
66. $150 \mathrm{~cm} \rightarrow \mathrm{~m}$
67. $250 \mathrm{lbs} . \rightarrow \mathrm{oz}$.
68. 250000 . Inches \rightarrow kilometers

For the following determine the number of molecules
69. 9.8 moles of O_{2}

70. 5 moles of $\mathrm{H}_{2} \mathrm{O}$

71. For the following determine the amount of moles
72. 2.3×10^{12} molecules of H_{2}
73. 3.2×10^{28} molecules of $\mathrm{C}_{2} \mathrm{H}_{4}$

For the following determine the Formula Weight (in grams/mole)
74. H_{2}
75. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
76. NaOH

For the following determine the mass (in grams)
77. 5.3 moles of O_{2}
78. 45.2 moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$

For the following determine the amount of moles found in each mass 79. 22 grams of O_{2}

For the following determine the amount of moles using the following equation

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

82. If one used 6 moles of O_{2}, how many moles of NO_{2} would be formed?
83. If one formed 4.2 moles of NO_{2}, how many moles of N_{2} are needed?

Determine the mass (grams) using the following equation
84. $3 \mathrm{H}_{2} \mathrm{O}_{2}+4 \mathrm{Al} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}$
85. 90.2 grams of Al was added to an excess of hydrogen peroxide, how much aluminum oxide was formed?
86. Determine the Limiting Reagent, the amount of product (in grams), and the amount of the excess reagent remaining after the reaction
$6 \mathrm{NaOH}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}=3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{Cr}(\mathrm{OH})_{3}$
87. How much $\mathrm{Cr}(\mathrm{OH})_{3}$ was produced (in grams) when 18 grams of NaOH was added to 38.2 grams of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
88. A car tire is inflated to 1710 mmHg at $6^{\circ} \mathrm{C}$. The temperature goes up over the next 9 days to $50^{\circ} \mathrm{C}$. What is the new pressure of the tire.
89. A bike tire can only contain 2 atm of pressure. Explain three ways in which the pressure of the tire could exceed the 2 atm .

FILL IN THE BLANK:

90. An acid, in the end will have to produce \qquad ions.
91. A base, in the end will have to produce \qquad ions.
92. Hydronium ion $=$ \qquad $=$ \qquad . (two different ways of writing.)
93. In a neutral solution the $\left[\mathrm{H}^{+}\right]$ions $=$ \qquad .
94. In an Acidic solution the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ions is greater than \qquad -
95. In a basic solution the $\left[\mathrm{OH}^{-}\right]$is \qquad the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
96. Phenolphthalein is a common acid base \qquad _.
97. In acidic solutions phenolphthalein is \qquad .
98. In basic solutions phenolphthalein is \qquad .
99. The sum of the pH and pOH equals \qquad _.
100. When calculating pH the range of acidic values are \qquad .

In the following questions determine the pH . Indicate whether the substance is acidic, basic, and neutral.

$$
\begin{aligned}
& 101 .\left[\mathrm{H}^{+}\right] \text {ions }=1.0 \times 10^{-7} \\
& 102 . \mathrm{pOH}=11.2 \\
& 103 .\left[\mathrm{H}^{+}\right]=1.62 \times 10^{-4} \\
& 104 .\left[\mathrm{OH}^{-}\right]=3.72 \times 10^{-11} \\
& 105 .\left[\mathrm{H}^{+}\right]=1.0 \mathrm{E}-5
\end{aligned}
$$

$\mathrm{HBr}+\mathrm{KOH} \rightarrow$
$25 \mathrm{~g} \quad 25 \mathrm{~g}$
106. Complete and balance the previous reaction.
107. Each reactant has the same mass. Why don't the reactants balance out to neutral.
108. What type of reaction is this?
109. Which of the two reactants is limiting?
110. How much salt can be produced?
111. How much excess is left over?

Titration:
You have discovered a unknown bottle of acid. You need to figure out the concentration.
You have collected a 15 mL sample of the acid. After a titration, the neutralization reaction required 26 mL of .5 M NaOH . Answer the following questions.
112. How many moles of NaOH were used?
113. How many moles of OH^{-}were used?
114. How many moles of H^{+}ions were consumed?
115. What is the molarity of the acid?
116. What is the pH of the unknown solution?

SALTS:

$\begin{array}{lllll}\mathrm{MgCO}_{3} & \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{FeCl}_{2} & \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{3} & \mathrm{NaOH}\end{array}$
117. Which of the following salts are neutral?
118. Which of the following salts are acidic?
119. Which of the following salts are basic?
120. Cations can produce acidic/ basic or neutral?

Solutions
121. 10.0 moles of NaCl dissolve in 10 L of $\mathrm{H}_{2} \mathrm{O}$. Determine the Molarity.
122. 5.0 moles of solute dissolved in 2.5 kg solvent. Determine molality.
123. 15.0 grams of NaNO_{3} dissolved in $250 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. Determine the M
124. 150.0 g of AgNO_{3} dissolved in 250 mL of $\mathrm{H}_{2} \mathrm{O}$ Determine the m.
125. You need 1 liter of .005 M Crystal Violet for an experiment. How many grams CV do you need. The molecular mass of CV is $407.5 \mathrm{~g} / \mathrm{mol}$.
126.In your stock room you have 40 grams of AgNO_{3}. What is the total volume of 1.5 M Concentration can you make?

Draw a Lewis structures for each individual in the following reaction.

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}^{-}
$$

127. Determine the energy involved in the bonds of the reactants.
(Using bond energies worksheet)
128. Determine the energy involved in the bonds of the products.
(Using bond energies worksheet)
129. Determine the $\mathbf{\Delta H}$ from the bond energies. (Bonds broken - bonds formed)
130. Draw a graph depicting an exothermic reaction. Label the $\Delta \mathrm{H}$ and the Ea.
131. Draw a graph depicting an endothermic reaction. Label the $\Delta \mathrm{H}$ and the Ea.
132.On a very hot day, in Wisconsin, cities along Lake Michigan are 15-20 degrees cooler then other regions of the state. Why?

Determine individual oxidation states

133. $\mathrm{CO}_{3}{ }^{-2}$
134. F_{2}
135. $\mathrm{Al}_{2} \mathrm{O}_{3}$
bALANCE THE FOLLOWING REACTIONS:
Determine the Voltage and draw a cell for each.

$$
\text { 136. } \mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}
$$

137. $\mathrm{Li}^{+}+\mathrm{Zn} \rightarrow \mathrm{Li}+\mathrm{Zn}^{2+}$
